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1. INTRODUCTION
1.1. Allosteric Modulation: A Historical Perspective.

Early ideas regarding allosterism emerged over 50 years ago but
gained little traction in the receptor field because of limitations
in molecular pharmacology and screening technology.1,2

Allosterism is a critical biochemical mechanism, as it enables
proteins to sense changes in their environment and to respond
to them; Fenton has recently referred to this as “second secret
of life”, preceded only by the genome.1−3 The term “allostery”
comes from the Greek allos (α̋λλος)́, “other”, and stereos
(στερεoς)́, “solid (object)”, meaning that an allosteric site of a
regulatory protein is physically distinct from the classic, active,
site.1−8 In terms of receptor-based small molecule drug
discovery, the binding site for the endogenous ligand is referred
to as the orthosteric site.1,4−8 In this setting, an allosteric
modulator is a small molecule that binds at a topographically
distinct allosteric site and either potentiates or inhibits the
binding and/or signaling of an orthosteric ligand.1,4−8 Fueled
by the clinical success of the first allosteric modulator drugs
1−4 (benzodiazepines, referred to as “benzo” or BZD), which
potentiate the effect of the neurotransmitter γ-aminobutyric acid
(GABA) at the ionotropic GABAA receptor, the concept of
allosteric modulation for a wide range of molecular targets has
gained momentum in modern drug discovery (Figure 1).4,9

Benzodiazepines, for example, possess a number of modes of
pharmacology and include positive allosteric modulators

(PAMs), which potentiate GABAA receptor response, and
negative allosteric modulators (NAMs), which decrease channel
activity and modulate the ability of these GABAergic receptors
to elicit sedative, hypnotic, and anxiolytic effects. In addition to
PAMs and NAMs, silent allosteric modulators (SAMs, or neutral
allosteric ligands) bind at allosteric sites and can block the
activity of PAMs and NAMs but importantly have no effect on
orthosteric ligand responses. In contrast to the potentially
deadly effects of direct acting GABAA agonists, allosteric
modulation of GABAA by the benzodiazepine class has proven
to be clinically safe and effective.4,9 With advances in molec-
ular pharmacology and screening technology, allosteric modu-
lators have now been developed for other ion channels, kinases,
phospholipases and seven transmembrane spanning receptors
(7TMRs, also known as G-protein-coupled receptors
(GPCRs)).1,4−8,10−15

1.2. 7TMR Structures and Ligands. 7TMRs are the
largest class of cell surface receptors, accounting for over 30% of
currently marketed drugs and over 50% of all known drugs.4−7

7TMRs are plasma membrane proteins that receive stimuli (in
the form of hormones, neurotransmitters, light, ions, or odorants)
on the extracellular surface to alter receptor conformation, which
in turn activates signaling cascades and effector systems located
within the intracellular cytosol via coupling to G proteins and
other accessory proteins.4−7 Much of our understanding of the
basic structure and function of 7TMRs is based on biochemical,
genetic, imaging, and molecular pharmacological research, as
crystal structures of 7TMRs (rhodopsin, opsin, β2 and β1
(agonist and antagonist bound), dopamine D3, adenosine 2A
(agonist and antagonist bound), chemokine CXCR4, histamine
H1) have only recently been solved definitively.4−7,16−32

However, these crystal structures have powered the development
of homology models for multiple 7TMRs and afforded avenues
for ligand design efforts. Structurally, all 7TMRs possess seven
transmembrane helices, three extracellular and three intracellular
loops, with an extracellular N-terminal tail and an intracellular
C-terminal tail (Figure 2).4−7,16−32 The heptahelical trans-
membrane domain is largely hydrophobic, whereas the extra-
cellular (e1−e3) and intracellular (i1−i3) segments, or loops, are
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Figure 1. Benzodiazepines, the first allosteric modulators with clinical
success and marketed as GABAA allosteric modualtors. A generic
benzodiazepine scaffold 1 highlighting the classical substitution
patterns is shown. 2 (Librium) was the first benzodiazepine launched
by Hoffmann-La Roche in 1960, and many other congeners followed
such as 3 (Valium) and the tricylic analogue 4 (Xanax).
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generally hydrophilic, as would be anticipated for amino acids
exposed to the phospholipid-rich membrane and the water-rich
environments, respectively. The seven transmembrane helices are
each approximately two-dozen amino acids long, while the C- and
N-terminal tails as well as the loops can vary widely in length with
up to hundreds of amino acids.4−7,16−32 On the basis of sequence
homology and functional roles, 7TMRs commonly are divided
into three main families (or classes): A (e.g., M1 mAChR), B (e.g.,
CRF1), and C (e.g., mGlu5) (Figure 2). The families are readily
distinguished by comparing their amino acid sequences. Family B
is distinguished from family A by the presence of a larger
extracellular loop, and family C has a large, bi-lobed N-terminal
Venus fly trap (VFT) domain. A second major difference
between the families concerns the location of the orthosteric
binding site and the nature of the orthosteric ligand. As shown in
Figure 2, the orthosteric binding site of many family A 7TMRs is
located with the 7TM domain whereas the orthosteric binding
site is located in the large extracellular loop within family B and
within the VFT domain in family C. The orthosteric ligands
for families A and C are neurotransmitters, for example, 5
(acetylcholine, for the mAChRs) and 9 (glutamate, for the
mGluRs), respectively.4−7 The orthosteric ligands for family B
7TMRs are large peptide ligands with usually >30 amino acids,
such as the 41 amino acid peptide 7 (hCRF) for corticotrophin
releasing factor 1 (CRF1). In contrast, allosteric ligands are
structurally distinct from orthosteric ligands and bind at distinct
sights, often, but not always, topologically distant from the
orthosteric site.4−7 For example, the family A M1 mAChR PAM 6
(BQCA)33 is believed to bind in a region above the TMs among
the extracellular loops, whereas the family B PAM, 8 (DMP696),34

and the family C NAM, 10 (MPEP),35,36 bind within the TM
domains.
Are there naturally occurring allosteric modulators? This

question is invariably posed during any discussion of allosteric
modulators, and one must understand the complexity of
identifying such ligands within the chemical diversity of ligands
within the human body.1,2,37 However, a few natural allosteric
modulators have been described, including the unnatural amino
acid D-serine (an allosteric modulator of the NMDA receptor),38

L-phenylalanine, and L-tryptophan (allosteric modulators of
the calcium receptor)39 and the tetrepeptide Leu-Ser-Ala-Leu,
also known as 5-HT moduline (an allosteric modulator of the
5-HT1B receptor).

40,41

1.3. Orthosteric and Allosteric 7TMR Pharmacology.
Historically, almost all of the FDA-approved drugs that act at
7TMRs bind at the orthosteric site and regulate receptor
function by classical agonism (directly stimulating a receptor
response), inverse agonism (blocking constitutive receptor
activity), or competitive antagonism (blocking the binding of
the native agonist).4−8 This is somewhat expected, as the many
of these ligands were discovered by employing assays that biased
targeting of the orthosteric binding site. Despite this success,
synthetic ligands exist for only a fraction of the known 7TMRs,
and many efforts have failed to produce highly selective com-
pounds suitable as drug leads because of the highly conserved
orthosteric binding site across a family of 7TMRs and/or
because of unfavorable physicochemical and drug metabolism/
pharmacokinetic (DMPK) properties of synthetic orthosteric
ligands. In many cases, direct acting agonists are toxic or lead to

Figure 2. Structural topology of typical orthosteric and allosteric sites of families A, B, and C 7TMRs, highlighting representative orthosteric and
allosteric ligands for each family.
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receptor desensitization, internalization, or down-regulation due
to being “turned on” for prolonged periods.4−8

In recent years, extraordinary progress has been made in the
discovery, chemical optimization, pharmacological understand-
ing, and in some cases, clinical development of allosteric
modulators for multiple 7TMRs to treat a wide range of
peripheral and CNS pathologies (Tables 1−3).4−8,10,11,42−180
This is due in large part to the development of functional assays
that allow discovery of ligands that modulate a receptor without
regard to the binding site and in effect identify ligands that do
not bind at the orthosteric site. These new allosteric ligands
include PAMs, NAMs, SAMs, as well as allosteric agonists
(allosteric compounds that activate the receptor in the absence
of the orthosteric ligand), partial antagonists (ligands that fully
occupy the NAM site but only partially block receptor
signaling), and ago-PAMs (PAMs that have inherent allosteric
agonist activity).4−8,10,11,42−44 However, many reported “allosteric”
agonists may actually be “bitopic” ligands, that is, hybrid
orthosteric/allosteric ligands that bind to both the orthosteric
and allosteric sites within a given 7TMR.181−183 Allosteric
ligands offer numerous advantages: (1) Allosteric binding sites

may be under less evolutionary pressure for their conservation,
thus enabling high subtype selectivity to be achieved. (2) The
effects of an allosteric modulator are saturable; once allosteric
sites are occupied, no additional effects are observed, i.e., a
“ceiling effect” (this is in contrast to “ceiling” of a partial agonist
that will vary with receptor density and stimulus response
coupling; this is thus far more variable than a ceiling level
driven by cooperativity (at the level of binding; i.e., an α of

Table 1. Reported Allosteric Modulators of Family A G-Protein-Coupled Receptorsa

receptor modulator example

adenosine A1 (PD 81723, PD 117975, PD 78416, PD 71605, LUF 5484, T-62);45 (VCP 520, VCP 333)46

adenosine A2 amiliorides

adenosine A3 VU5455Z, VU8504Z, DU124183, [LUF6000 (compound 3 in paper)],47 (AM 251, 2-arachidonylglycerol or 2-AG)48,49

adrenoceptor α1 amilorides, benzodiazepines, conopeptide, ρ-TIA

adrenoceptor α2A, α2B amilorides, sodium ions50

adrenoceptor β2 zinc

cannabinoid CB1 Org27569,51 Org27759,52 PSNCBAM-1,53 (JHW 007, RTI-371)54

chemokine CXCR1 reparixin,55 SCH527123 (compounds 2−27 inhibit CXCL8 which activates CXCR1, overall inhibition of CXCR1),56,57

SCH-47983358

chemokine CXCR2 reparixin,55 SCH527123,56 SB656933,59 DF2162,59 SCH-47983358

chemokine CXCR3 IP-10, I-TAC

chemokine CXCR4 RSVM,60 ASLW,60 trichosanthin,61 plerixafor62

chemokine CCR1 BX-471,63 CP-481-715,64 UCB3562565

chemokine CCR3 UCB3562565

chemokine CCR5 trichosanthin,61 TAK779,66 aplaviroc, AK602, 873140,66,67 AK530,68 TAKK 220,69 SCH351125, ancriviroc,70 vicriviroc,71

maraviroc72

dopamine D1 zinc73

dopamine D2 amiloride,74 zinc

endothelin ETA aspirin, sodium salicylate75

gonadotropin-releasing hormone
receptor (GnRH)

furan derivitive -1 (bitopic), TAK-01376

GH secretagogue L-629,429, GHRP-6, MK-67777,78

luteinizing hormone Org 41841, [3H]Org 4355379

mAChR M1 brucine, BQCA, TBPB, AC-42, 77-LH-28-1, N-DMC,3,43,80,81 VU0119498,82 staurosporine, ML169,83 ML137,84

ML07185

mAChR M2 McN-A-343, BR384, gallamine,86 W84,87 AC-42, 77-LH-28-188

mAChR M3 VU0119498,82 amiodarone, N-ethylamiodarone

mAChR M4 LY2033298,89,90 VU0010010,91 VU0152099,92 VU015210092,93 ML108,92 thiochrome,3,43,80,81 WIN 62577, alcuronium,
ML17393

mAChR M5 ML129,94 VU0119498,82 VU0365114,95 VU0400265,96 ML17295

neurokinin NK1 heparin

opioid μ, δ cannabidiol97

purine P2Y1 2,2-o-pyridylisatogen tosylate

serotonin 5HT1B/1D 5HT-modulin

serotonin 5HT2A, 5HT2 oleamine98

serotonin 5HT2C oleamine,98 PNU-69176E99

aGH, growth hormone; mAChR, muscarininc acetylcholine receptor.

Table 2. Reported Allosteric Modulators of Family B
G-Protein-Coupled Receptorsa

receptor modulator example

CRF1
receptor

NBI 35965,100 NBI 27914,101 antalarmin,102 DMP696,34

SSR125543A,103,104 DMP904,34 NBI 30775/R121919105,106

CGRP
receptor

compounds 1, 3, and 4107

glucagon L-168049,108 DAB, and CP-91149109

GLP-1
receptor

T-0632, NovoNordisk compounds 1−6,110 compound 2111

aCGRP, calcitonin gene related peptide; CRF1, corticotrophin
releasing factor 1; GLP-1, glucagon-like peptide 1.
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10 sets a limit of 10, whereas a partial agonist can scale up to a
full agonist or down to an antagonist depending on the tissue
and the disease)). (3) A modulator that lacks agonistic activity
will only exert its effects when the endogenous agonist is
present, resulting in temporal and spatial activity (also referred
to as state dependence) of the endogenous ligand and (4)
improved chemical tractability.4−8 While the majority of these
advantages over orthosteric ligands have been realized, allosteric
modulation is far from a panacea for drug discovery, and there
are many caveats to consider. First, the lack of evolutionary
pressure on allosteric sites can, and has, lead to significant
species differences, which complicates preclinical pharmacody-
namic and safety studies in mice/rats/dogs if a primary assay
employs recombinant human receptor or vice versa.4−8,10,11

Second, the state dependence of allosteric modulators could be
a liability in degenerative pathologies because of the progressive
loss of endogenous orthosteric tone. For example, Alzheimer’s
disease is characterized by a decrease in cholinergic tone with
disease progression, potentially rendering an mAChR PAM
ineffective over time, as there is no acetycholine to potentiate. In
these situations, an allosteric agonist might prove to be more
optimal for disorders in which the orthosteric ligand is lost as
the disease progresses.4−8,10,11,42−44,181−183

By their very nature, allosteric ligands promote distinct con-
formations of 7TMRs such that the interactive properties of
the receptor toward orthosteric ligands, as well as intracellular
cytosolic proteins, can be modified in a ligand- and signaling
protein-specific manner. This phenomenon has been termed
“probe dependence”184 and has substantial implications for the
functional characterization and classification of allosteric modu-
lators, as well as challenges associated with assigning quantitative
parameters to facilitate allosteric ligand SAR. For example, the
allosteric modulator 11 (LY2033298) positively modulates the
binding affinity of the orthosteric agonist, ACh at the M4
muscarinic receptor, but is neutral when tested against the
orthosteric antagonist 12 ([3H]-QNB).90 Use of the endogenous
agonist in a compound screen would thus reveal the allosteric
activity of a ligand such as 11, whereas a radioligand-based screen
using 12 as the probe would fail to identify 11 (Figure 3). This
highlights the requirement for careful consideration in the choice
of orthosteric ligands to assess the effects of an allosteric
modulator. Although the endogenous agonist for a given 7TMR
should be the orthosteric probe of choice, this may not always be
possible because of issues such as compound stability or in

situations such as screening for ligands for orphan 7TMRs where
the endogenous agonist is not known. In these cases, the use
of a surrogate orthosteric probe is common, but the ensuing
pharmacology may prove to be misleading because of the
potential for differential probe dependence between the
modulator and the surrogate agonist relative to the therapeutically
relevant endogenous agonist. These considerations also extend to
the potential for off-target activities of allosteric modulators.
Although the aforementioned mAChR allosteric ligand 11 is a
selective PAM for the M4 mAChR when tested against ACh, it
displays remarkable positive and negative allosteric effects at the
M2 mAChR when tested against other orthosteric agonists, such
as oxotremorine and xanomeline. If the latter agents were used as
surrogates to characterize mAChR activity in modulator screens,
then the resultant pharmacology would reflect activity at an
undesired target (e.g., M2 mAChR) in addition to the desired
target (e.g., M4 mAChR).

90 Finally, there are many 7TMRs that
have more than one endogenous orthosteric agonist but that
may not all respond the same way to allosteric ligands. A striking
example of this phenomenon was recently observed at the
glucagon-like peptide 1 (GLP1) receptor, where the small
molecule allosteric agonist 13 (Novo Nordisk’s compound 2) had
no effect on the signaling of the endogenous orthosteric peptide
agonist GLP1(7−36) but significantly potentiated the signaling of
another endogenous GLP1 receptor peptide, oxyntomodulin
(Figure 3).110

Table 3. Reported Allosteric Modulators of Family C G-Protein-Coupled Receptorsa

receptor modulator example

calcium sensing
receptor

NPS 467, NPS 568, L-amino acids,112−114 cinacalcet,115 NPS 2143,116 calhex 231,117 SB-423557,118 SB-423562,119 calindol, ronacalceret37

GABAB BHF177,120 rac-BHFF, BHFI,121 CGP7930, GS39783, CGP13501122−125

mGluR1 (−)-CPCCOEt,126 BAY36-7620,127 R214127,128 EM-TBPC,129 JNJ16259685,130 YM-298198,131 A841720,132 FTIDC,133 YM-230888,134

CFMMC,135 VU-71,136 Ro 01-6128, Ro 67-4853, Ro 67-7476,137 Ro 07-11401138,139

mGluR2 LY181837, LY487379, 3-MPPTS, cyPPTS, 2,2,2-TEMPS, CBiPES,140−143 BINA,144 GSK1331258,145 MNI-136, MNI-137146−148

mGluR3 MNI-136, MNI-137146,147

mGluR4 (−)-PHCCC,149,150 ML128,151 VU0001171, VU0080241, VU0092145, VU0155041,152−154 VU0359516,155 SIB-1893156,157

mGluR5 MPEP,35 MTEP,158 fenobam,159 VU0285683, VU0360172,160 DMeOB, DFB, DCB,161 VU0365396, VU0357121,162 CPPHA,163,164

CDPPB,165,166 VU-29,167 ADX-47273168−171

mGluR7 AMN082,172 MDIP, MMPIP173

T1R1 S807, IMP37,174−176

T1R2 S819, SE-2, SE-337,177,178

T1R3 cyclamate, lactisole37,179,180

amGluR, metabotropic glutamate receptor; T1R, taste receptors (sweet and umami).

Figure 3. Structures of GPCR allosteric ligands 11, 13, 14, and 15 that
demonstrate the concept of “probe dependence”, with 12, an mAChR
orthosteric radioligand discussed in the text.
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As a final point, when an allosteric ligand binds to a 7TMR,
the receptor adopts a unique, novel conformation (vide infra),
enabling it to activate any number of downstream signal-
ing cascades to the exclusion of other possible receptor
states.4−8,10,11 Here, probe dependence manifested at the level
of the cytosolic interacting protein (e.g., G protein; β-arrestin,
etc.) would result in signal pathway-dependent allosteric
modulation. This has been coined “stimulus bias”, “stimulus
trafficking”, “differential receptor trafficking”, or “functional
selectivity”.185−187 In short, an allosteric ligand may activate all
downstream signaling cascades or a “surgical” selection of
cascades with clear ramifications in pharmacodynamic models;
therefore, it is critical to possess the requisite assays to under-
stand how an allosteric ligand will modulate multiple signal-
ing events. For example, the mGlu5 PAM 14 (CPPHA, family
C 7TMR) was shown to have differential effects on DHPG-
mediated calcium signaling and ERK1/2 phosphorylation in a
native astrocyte system.188 In addition, an allosteric modulator
of the M1 muscarinic receptor 15 (VU0029767) potentiates
ACh-mediated intracellular calcium mobilization but not phos-
pholipase D activation; therefore, depending on the pathway/
assay assessed, 15 would alternatively be classed as a PAM or a
SAM, respectively (Figure 3).82

2. MODE OF ACTION OF ALLOSTERIC MODUALTORS

7TMRs are highly flexible proteins capable of assuming
multiple conformations, of which some are active, some are
inactive (pharmacologically silent), and some are partially
active. In fact, 7TMRs should be thought of as ensembles
of tertiary conformations randomly sampled by the receptor,
and very subtle changes (as small as 1 Å) can engender pro-
found effects on receptor activity.1,4−8,10,11 Thus, when an
allosteric modulator binds to a site topographically distinct
from the orthosteric site, a change in receptor conformation
occurs that can modify receptor activity in a positive, negative, or
neutral direction. As mentioned before, the allosterically bound
receptor is a “new” receptor type, with novel behavior and
activity potential. Oligomerization of GPCRs, as either hetero-
or homodimers, adds additional opportunities for modulation
and probe dependence.189 Operationally, 7TMR allosteric
modulators exhibit affinity modulation, efficacy modulation,
or varying degrees of both modes of modulation (Figure 4A).

With affinity modulation, the conformational change in the
7TMR upon allosteric ligand binding can affect either the
association or dissociation rate (or both) of the orthosteric
ligand.1,4−8,10,11 For example, a PAM that displays affinity
modulation will result in a more potent orthosteric ligand
(agonist). For efficacy modulation, the conformational change
in the 7TMR upon allosteric ligand binding leads to a change in
signaling capacity (also termed intrinsic efficacy) and thereby
either facilitates or inhibits receptor coupling to downstream
effectors. There are two models proposed to account for the
interactions between the allosteric and orthosteric ligand
(Figure 4B and Figure 4C).1,4,7 In one model, termed the
“allosteric hot wire”, the allosteric modulation site is directly
linked to the orthosteric site through specific pathways.1,190,191

In a more recent model, termed “global allosteric modulation”,
allosteric communication to the orthosteric site relies on long-
range interaction through order/disorder transitions from
multiple receptor conformations (i.e., population dynamics).192,193

A number of mass-action schemes, based on variants of the
ternary complex model, have been presented to describe the
molecular effects of allosteric ligands on orthosteric pharmacol-
ogy in terms of one or more “cooperativity factors”, which
indicate the magnitude and direction of an allosteric modulator-
mediated stabilization of different 7TMR states.4 From these
models, it can be appreciated that the functional potency of
an allosteric modulator will depend not only on its affinity for
the allosteric site but also on the degree of cooperativity with the
orthosteric ligand. Thus, a PAM (e.g., 11) may bind to the
receptor with weak affinity but possess potent functional activity
due to a high cooperativity factor.4,10,90 In contrast, another
PAM (e.g, benzodiazepines) may bind with very high affinity
but low positive cooperativity, thus also displaying potent
functional activity. The low affinity observed with some PAMs
can preclude them from serving as radioligands and PET tracers,
and the affinity/functional activity balance must be carefully
assessed when considering receptor occupancy, for example, as
a potential biomarker strategy.
Unfortunately, most mass-action-based molecular models of

allosteric modulation contain too many parameters to be fitted
to real experimental data and thus cannot be used to rationalize
structure−activity studies in a manner that can inform drug
candidate selection matrices. A useful means for placing these
issues on a more practical quantitative level is through the use
of an “operational” model of allosterism and agonism, which
has been developed to describe allosteric effects in terms of a
minimum number of experimentally accessible parameters.194

This model is illustrated conceptually in (Figure 5), and the
equation describing the signaling of an orthosteric agonist in
the presence of an allosteric modulator according to the model
is as follows:

= τ + αβ + τ

+ + + α

+ τ + αβ + τ

E E K K

K K K K

K K

{ ( [A]( [B]) [B] ) }/

{([A] [B] [A][B])

( [A]( [B]) [B] ) }

n

n

n

m A B B A

B A B A

A B B A

where E is the effect, [A] and [B] are the concentrations, KA
and KB are the equilibrium dissociation constants of the
orthosteric and allosteric ligand, respectively, α is the
cooperativity factor describing the allosteric effect of each
ligand on the other’s binding affinity, β is a scaling factor (from
zero to infinity) that quantifies the magnitude by which the
allosteric modulator modifies the efficacy of the orthosteric

Figure 4. Mode of action of 7TMR allosteric modulators. (A)
Allosteric ligands bind to a site topographically distinct from the
orthosteric site on the 7TMR to modulate either the affinity (AM,
affinity modulation) or efficacy (EM, efficacy modulation). This is in
contrast to direct orthosteric agonism (OA) by the native ligand or
allosteric agonism (AA) by the allosteric ligand alone. (B) “Hot wire”
mode of allostery, suggesting a direct energy link between the allosteric
binding site (green) and the orthosteric binding site (peach). (C)
“Global allosteric modulation” mode, suggesting that changes at the
orthosteric site are derived from global conformational variants within
an ensemble of conformations.
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agonist at a given signal pathway, and the parameters τA and τB
relate to the ability of the orthosteric and allosteric ligands,
respectively, to promote receptor activation (direct agonism).
These latter parameters incorporate the intrinsic efficacy of
each ligand, the total density of receptors, and the efficiency
of stimulus-response coupling. The parameters Em and n denote

the maximal possible system response and the slope factor
of the transducer function that links occupancy to response,
respectively.4,10,194

Importantly, the operational model can be fitted to
experimentally derived data to provide estimates of some, or
all, of its parameters.47,52,90,195−197 At a minimum, there are three
key parameters that can be routinely derived from application of
this model to most functional screening data, as long as full
concentration response and curve-shift relationships are
determined. These three parameters are the allosteric modulator
KB, which provides information on the interaction of the
allosteric ligand with the allosteric binding pocket on the free
receptor, the composite cooperativity parameter αβ, which
provides information on the overall allosteric effect on the
orthosteric agonist in the chosen functional assay, and the
modulator efficacy parameter τB, which provides information on
the ability of the allosteric ligand to promote agonism in its own
right in the absence of orthosteric ligand. Table 4 illustrates an
example of such allosteric modulator SAR determined through
analysis of the functional effects of a series of 2-amino-3-
benzoylthiophenes (2A3BT) on A1 adenosine receptor-mediated

Figure 5. Schematic representation of the parameters underlying the
operational model of allosterism and agonism. Parameters are defined
in the main text.

Table 4. Allosteric Operational Model Parameters Describing the Functional Effect of Various 2-Amino-3-benzoylthiophenes
on ERK1/2 Phosphorylation mediated by the Orthosteric Agonist R-PIA at Adenosine A1 Receptors

aCompound nomenclature refers to compound identifier in the manuscript in which it originally appeared.
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ERK1/2 phosphorylation.46 From this analysis, it can be seen
that the increase in trifluoromethylphenyl substitutions to the R2
group of the 2A3BT scaffold can increase positive cooperativity
while having a detrimental effect on modulator affinity (compare
16b to 16d, and 16g to 16h), whereas conformational constraint
in the R2/R3 regions tends to convert positive modulators into
highly negative modulators (e.g., 16n, 16r). It is also noted that
the reference compound, 16a, progressed into phase IIB clinical
trials for the treatment of neuropathic pain (King Pharmaceut-
icals) prior to failing due to lack of efficacy; it is possible that this
failure may be attributed to the rather low degree of positive
cooperativity, as revealed by the application of the operational
model to the in vitro data. Although speculative, this finding
highlights some of the advantages of operational modeling when
applied to allosteric SAR, namely, the ability to link the chemistry
to the key, measured biological parameters and the ability to
facilitate hypothesis generation to understand biological mecha-
nisms and their relevance to the desired therapeutic profile. For
instance, one can ask questions such as the following: How much
cooperativity (αβ) or allosteric agonism (τB) is required to
achieve in vivo efficacy? How do structural modifications affect
compound affinity (KB) versus cooperativity (αβ)? The latter is
important because these properties are not correlated, and thus,
different structural manipulations can change them in different
directions. Probe dependence will manifest as different αβ values
depending on the orthosteric agonist used and/or the signal

pathway being assessed as a readout of receptor activation. In
terms of drug discovery programs, these insights can be used to
more rationally inform the design of candidate selection matrices
for drugs acting allosterically.46,47,52,90,195−197

3. IN VITRO PHARMACOLOGY OF ALLOSTERIC
MODULATORS

The development of high-throughput functional (kinetic)
assays have enabled scientists to perform screens of large
compound collections and to identify small molecules capable
of modulating the activity of a receptor through novel, allosteric
mechanisms.4,160,198−201 While there are multiple approaches
and technologies to accomplish this for 7TMRs, one of the
most common approaches measures receptor-induced mobi-
lization of intracellular calcium using an imaging-based plate
reader that makes simultaneous measurements of calcium
levels in each well of a multiwell microplate containing cells
transfected with the receptor of interest and loaded with
calcium-sensitive fluorescent dye. In the early stages of drug
discovery for allosteric modulators of 7TMRs, HTS campaigns
targeted the identification of either PAMs or NAMs, running
single-point screens with either an EC20 or EC80 concentration
of the orthosteric agonist, respectively. More recently, “triple
add” protocols have supplanted “single add” screens to allow
for, in a single assay, the identification of PAMs, NAMs,
agonists, and antagonists (Figure 6A).4,160,198−201 Because of

Figure 6. Functional assays, measuring calcium fluorescence as a surrogate for 7TMR receptor activation, employed to identify and profile 7TMR
allosteric modulators. (A) “Triple add” paradigm for both HTS campaigns and primary assay for lead optimization: vehicle (black) trace where an
EC20 of orthosteric agonist is added 150 s into the kinetic run, followed by an EC80 of orthosteric agonist. Compounds are added at T = 0, and an
agonist (green) elicits calcium fluorescence immediately upon addition. Secondary assays with orthosteric radioligands and/or mutant receptors will
determine if the compound is an orthosteric or allosteric agonist. An antagonist (red) will block both the EC20 and the EC80; once again, secondary
assays will distinguish competitive from noncompetitive (NAM) antagonists. A pure PAM (blue) will not elicit receptor activation alone but will
potentiate the EC20 to varying degrees of efficacy, while an ago-PAM (orange) will activate the receptor alone, plus potentiate the EC20. Hence, a
single assay protocol will identify agonists, allosteric agonists, PAMs, ago-PAMs, antagonists, and NAMs. (B) In vitro pharmacology of an mAChR
PAM, once again with a calcium fluorescence readout. The PAM has no effect alone on receptor activation, but in the presence of an EC20 (or
subthreshold concentration of orthosteric agonist, ACh in this case), a classical concentration−response curve (CRC) results, from which an EC50
for potentiation can be calculated. Also, the %Max, the degree of potentiation above the EC20, can be measured, and both the EC50 and %Max must
be optimized. (C) “Fold shift” assay. Here, the concentration of the orthosteric agonist (ACh) is held constant, and increasing concentrations of the
PAM cause a parallel leftward shift of the ACh CRC, in effect making ACh a more potent agonist.
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the emerging concept of “molecular switches” (see below),202

this screening paradigm is also optimal for use as a program’s
primary assay to identify subtle structural changes leading to
opposing modes of pharmacology.
As shown in Figure 6B, a prototypical PAM has no effect on

the transfected cells in the absence of the orthosteric agonist,
but in the presence of a subthreshold concentration of the
orthosteric agonist, increasing PAM concentrations provide a
classical concentration−response curve (CRC) from which an
EC50 for potentiation can be quantified as an empirical measure
of modulator potency under a defined set of assay conditions.4,5

This also affords a %Max value, the maximum increase in
activity of the orthosteric agonist above the EC20, i.e., from an
EC20 to an EC80. In this type of experimental paradigm, the
observed EC50 reflects both the affinity of the modulator for the
allosteric site and the degree of cooperativity that it exerts on
the orthosteric ligand. In contrast, the %Max only reflects the
cooperativity of the interaction. Each of these parameters must
be optimized, as it is possible to have allosteric modulators with
high potency and low %Max (reflecting high affinity and low
cooperativity), weak potency and high %Max (low affinity and
high cooperativity), and various combinations thereof. If the
assay is run in an alternative mode, whereby the complete
orthosteric agonist CRC is determined in the absence or
presence of a fixed concentration of allosteric modulator, then
another property that can be evaluated and optimized is the
degree of the agonist curve “fold shift”, either to the left
(potentiation) or right/down (antagonism) of an agonist CRC
(Figure 6C).4,5 This is typically reported as a fold shift at a single
concentration, such as a 30-fold shift at 10 μM. Optimally, if
multiple modulator concentrations are utilized in this latter type
of experiment, then the data can be fitted to the operational
model (above) and direct estimates of affinity and cooperativity
can be obtained. Irrespective, each of the properties described in
the preceding section (%Max, potency, fold shift or operational
model affinity, cooperativity, and efficacy) must be simulta-
neously optimized for optimal in vivo efficacy.4,5 A common
question posed in small molecule allosteric modulators
programs is the follwing: Which of these parameters is most
important for in vivo efficacy? Unfortunately, the answer is not
clear and may vary by 7TMR, allosteric binding site, allosteric
ligand chemotype, and therapeutic indication. For now, a
general empirical guideline followed by most researchers in the
field is to optimize for potency (EC50) and %Max and aim for at
least a 5-fold shift of the agonist CRC; however, estimates of
fold shift for some family A and family C 7TMR allosteric
ligands may approach >70-fold, depending on the assay.4,5

Other properties of a CNS compound, for example, the ability
of a compound to penetrate the blood−brain barrier, the
clearance of a compound from the brain and systemic
compartments, the amount of compound that is non-protein
bound and able to interact with the target, and the in vivo
situation being assessed (for example, how long does a receptor
need to be occupied with drug to maintain efficacy), certainly
must be balanced with in vitro pharmacology profiles when
assessing in vivo efficacy and potency of allosteric modulators.

4. STRUCTURE−ACTIVITY RELATIONSHIPS (SARS)
WITHIN mGluRs AND mAChRs

Another common observation from numerous structure−
activity relationship (SAR) studies performed to date on
7TMR allosteric modulators is the finding of “flat” or “shallow”
SAR for different classes, often making optimization of micromolar

potency ligands either difficult or impossible.1,4−12 The liter-
ature in this arena is filled with tales of heroic optimization
campaigns wherein hundreds or thousands of compounds were
synthesized and evaluated, affording only 5−10% active
molecules. However, there are also cases wherein SAR is robust
and tractable, though rare. Thus, for the chemical optimization
of allosteric ligands,4,197,202 focused, iterative library synthesis
provides a distinct advantage over traditional singleton
approaches; however, multiple dimensions of a scaffold must
be surveyed to identify regions tolerant of modification. As SAR
is often extremely “shallow”, the concept of walking fluorine
atoms around an allosteric ligand, i.e., “the fluorine walk”, has
achieved some success in identifying positions tolerant of
change. For example, 6 displayed “shallow” SAR, and multiple
attempts at optimization, adding groups larger than fluorine
(methyl, OR, Cl, Br, alkyl, etc.) to multiple positions (i.e., R1
and/or R2) on the scaffold of 6, led to primarily inactive
compounds 17.33,203 The strategic installation of fluorine atoms
to both the core R1 and the benzyl side chain R2 of 6 led to
compounds with significant improvements in M1 PAM activity
(Figure 7) but only in the 5- (18), 8- (19), or 5,8-positions
(20); introduction of fluorine atoms in any other position led
to inactive compounds. Once identified, these new fluorinated
cores opened up new avenues for diverse functionalization on
the benzyl core that were not tolerated on the parent core,
leading to potent M1 PAMs such as 21 (M1 EC50 = 41 nM).203

A very similar “fluorine walk” strategy has proven successful in
developing submicromolar M1 PAMs in other chemotypes.83,84

It is important to note that in these cases and many other
published studies, only fluorine substitutions were tolerated,
making this approach a potential first tier strategy in allosteric
ligand optimization.
In addition to the “flat” or “shallow” allosteric structure−

activity relationships (SAR), the emerging concept of “molecular
switches”, i.e., subtle structural changes that can change the
mode of pharmacology (from PAM to NAM and/or SAM)
and/or subtype selectivity within a family of receptors, threatens
to diminish the application of rational drug design approaches to
allosteric modulators.202 Moreover, unexpected occurrences of
“molecular switches” require alterations to routine screening
paradigms for optimization efforts. Here, the “triple add”
approach is ideal,4,160,198−201 identifying allosteric agonists,
PAMs, and NAMs in a single screen. Although examples of
“molecular switches” developed for mGluRs and mAChRs are
presented herein, this subtle effect has been reported for
allosteric kinase and phospholipase ligands as well.202

In the field of mGluRs, the first allosteric modulators
disclosed were (−)-ethyl (7E)-7-hydroxyimino-1,7α-dihydro-
cyclopropa[b]chromene-1α-carboxylate (CPCCOEt, mGlu1
selective) and 10 (mGlu5 selective), both NAMs, followed by
the earliest mGlu5 PAMs, 3,3′-difluorobenzaldazine (DFB), 14,
and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide
(CDPPB).4,44 While various molecular switches on the
difluorobenzaldazine scaffold had the ability to engender the
full range of PAM, NAM, and SAM pharmacology (structures
not shown),161 an even more surprising example of
pharmacological mode switching can be seen in Figure 8. A
functional HTS with the mGlu5 receptor identified the “partial
antagonist” 22, which maximally inhibited 71% of the glutamate
response with mGlu5 IC50 = 486 nM.202,204−206 This simple and
very low molecular weight hit was rapidly explored using a
parallel iterative library approach to reveal numerous molecular
switches. Introduction of a 3′-methyl group transformed the
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partial antagonist into a very potent full NAM 23 (mGlu5
IC50 = 7.5 nM). This methyl group exquisitely illustrates the
idea of a “molecular switch” as it is moved just one position
over to provide compound 24, which is now a weak PAM
(mGlu5 EC50 = 3.3 μM) with the ability to potentiate a
submaximal dose of glutamate up to a full glutamate response
(99% Glu Max). Further optimization within this series of
PAMs provided compound 25, a very potent mGlu5 PAM that
possessed robust in vivo efficacy in a rodent amphetamine-
induced hyperlocomotion assay.202,204−206

Also within the mGluR field, molecular switches have been
reported that profoundly affect the receptor subtype selectivity
of a given allosteric ligand and also the mode of pharmacology.
Figure 9 shows 26 ((−)-PHCCC), which possess both mGlu4
PAM and mGlu1 NAM activity.155 Introduction of a weakly
basic nitrogen to arrive at 27 (VU0359516) effectively
abolished all mGlu1 NAM activity to provide a pure mGlu4

PAM (EC50 > 30 μM versus mGlu1−3,5−8) with good potency
and efficacy (mGlu4 EC50 = 380 nM, Glu Max = 121%, 20-fold
shift).155 Subsequent to this work, an mGlu2 FRET-based
binding assay identified the fluorinated analogue 28 which
displayed mGlu2 Ki = 6.6 μM while at the same time lacked all
functional activity at mGlu2 and mGlu3.

207 Importantly, 28 could
also block (silence) the activities of related mGlu2 and mGlu3
allosteric modulators 29−31, the definition of an mGlu2/3 SAM.
As alluded to above, the position of the fluorine in 28 represented
a productive location for the introduction of alternate molecular
switches (Figure 9, X = Cl, Me, OMe) which could transform an
mGlu1 NAM/mGlu4 PAM 26 or an mGlu2/3 SAM 28 into a
series of mGlu2 NAM/mGlu3 PAMs 29−31.207
These types of molecular switches that govern receptor

subtype selectivity have similarly been reported in the mAChR
literature. Figure 10 shows 32, which was an attractive, low-
molecular weight PAM hit from a functional HTS assay with
the M1 mAChR.

82,84,94−96 Although originally identified as only
an M1 PAM, subsequent characterization revealed 32 to be a

Figure 8. Subtle “molecular switches” within a series of mGlu5
allosteric ligands giving rise to partial antagonists 22, full NAMs 23,
and PAMs 24 and 25.

Figure 9. Subtle “molecular switches” within a series of mGlu4
allosteric ligands providing a selective mGlu4 PAM 27 or allosteric
ligands that cross over into the group II family of mGlus and
displaying mGlu2 and mGlu3 PAM, NAM, and SAM activities.

Figure 7. SAR within the M1 PAM 6 chemotype. Groups R1 and R2 other than F, as in 17, were not tolerated and afforded inactive compounds.
Walking fluorine atoms around the core identified three positions, leading to cores 18−20 that engendered M1 PAM activity. Reoptimization with
the fluorinated cores led to potent M1 PAMs such as 21.
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nonselective Gq-coupled mAChR PAM displaying activity at
the M1,3,5 receptor subtypes while being devoid of activity at the
Gi-coupled M2 and M4 mAChRs.82 This interesting selectivity
for the different G-protein-coupled signaling pathways spurred
medicinal chemistry efforts to determine if subtle molecular
switches could be discovered that might provide selectivity for a
single mAChR subtype. The first breakthrough came with the
discovery that placing a 5-trifluoromethoxy substituent on the
isatin core led to a profound preference for M5 PAM activity.
This molecular switch employed during an exploration of
substituents about the benzyl group ultimately provided 33
(R = Me, ML129) and 34 (R = Ph, ML172), the first and most
highly selective M5 PAMs, respectively, reported to date.94−96

Further structural modifications around the nonselective lead
32 revealed that replacing the bromine with various aryl groups
identified the N-methylpyrazole as a powerful molecular switch
for establishing high levels of M1 selectivity. Fine-tuning this M1
PAM activity through the strategic introduction of a fluorine
atom, i.e., the “fluorine walk”, provided the highly selective M1
PAM 35 (ML137).84 Ongoing studies exploring the utility of
these and other allosteric ligands promise to reveal numerous
additional molecular switches, and as these compounds
progress into more animal models and detailed DMPK evalua-
tions, it will only be a matter of time before metabolism-
induced molecular switches are reported.201 Such molecular
switches may not be observed within all allosteric ligand
scaffolds or at all allosteric binding sites; in fact, some allosteric
ligands and binding sites are considered “molecular locks” with
robust tractable SAR.

5. OPPORTUNITIES FOR CNS DISORDERS AND
THERAPEUTICS

Despite these challenges, allosteric ligands have enabled researchers
to develop small molecule tools (Tables 1−3)4−8,10,11,42−180
with exquisite selectivity for a particular target, not possible
with orthosteric ligands, and to achieve proof of concept in
preclinical models of various CNS disorders. For example,
mGlu5 NAMs have provided preclinical target validation in
models of anxiety, fragile X syndrome, chronic pain, migraine,

and GERD.170 In fact, mGlu5 NAMs are one of the most
advanced with multiple compounds in clinical development and
displaying efficacy in phase II (Table 5).208−230 Diverse
chemotypes of both mGlu5

171 and mGlu2
148 PAMs have shown

robust activity in preclinical models of schizophrenia and cognition,
while selective mGlu4 PAMs157 have validated the target for both
pain and Parkinson’s disease.4

The biogenic amine receptors, the prototypes for promiscu-
ous pharmacology, have benefited greatly from allosteric
approaches.4,42−180 For example, the mAChRs have been
targets of interest for multiple CNS disorders since the 1950s,
but the highly conserved orthosteric (acethycholine) binding
site led to unselective small molecules. Because of the
therapeutic relevance of the mAChRs, multiple companies
advanced orthosteric pan-mAChR agonists into the clinic and
noted efficacy in phase II and phase III trials in Alzheimer’s
disease and schizophrenia patients; however, the adverse events
from activation of peripheral M2 and M3 prevented further
development. Recently, allosteric ligands, both allosteric/
bitopic agonists and PAMs, have been developed for M1, M4,
and M5.

4,43 These tools are now dissecting the individual
contributions of these three mACh receptor subtypes in the
clinical efficacy of pan-mAChR agonists. Importantly, this is but
one example against the backdrop of the allosteric ligands in
Tables1−3,4,42−180 that are validating discrete targets within
large families of receptors and shedding light on the therapeutic
potential of GPCRs, long obscured by the lack of selective tool
compounds.
Finally, it is very important to point out that allosteric ligands

have been advanced into marketed therapeutics, suggesting that
the approach of targeting allosteric mechanisms is sound and
tractable (Figure 11). 36 is a PAM of the calcium sensing
receptor (a family C GPCR) and is used to treat hyper-
parathyroidism.115 37 is a NAM of chemokine receptor 5 (a
family A GPCR) that inhibits HIV entry into cells and is used
to treat HIV infections.72 Thus, both PAMs and NAMs have
advanced to the market, with many other allosteric ligands in
clinical trials and late preclinical development.4

Figure 10. Subtle “molecular switches” within a series of mAChR allosteric ligands that afford highly selective M5 PAMs 33 and 34 or a selective M1
PAM 35.
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6. CONCLUSION
The broad uptake of the concept of allosteric modulation has
led to a renaissance in pharmacological approaches toward
7TMR pharmacology, promising new and exciting avenues to
the pursuit of receptor-subtype and pathway-selective small
molecules. Although the promises of this approach are
apparent, there remain significant challenges with regard to
optimal means for detecting, validating, and quantifying
allosteric ligand effects in a manner that routinely informs
SAR and candidate selection matrices and is also ultimately
predictive of therapeutic efficacy. To meet these challenges,
further convergence is required between the disciplines of
pharmacology, which can shed insight into the nature and
mechanisms underlying phenomena such as probe dependence
and pathway-biased modulation, medicinal/synthetic chemistry,
which can overcome the issue of “flat” allosteric SAR and
explore the full potential of molecular switches in creating new
allosteric behaviors, and structural biology, which can identity
the underlying structural basis of allosteric ligand binding and
the associated receptor conformations that mediate allosteric
effects. Fortunately, recent work in the field is illustrating how
truly translational approaches toward 7TMR pharmacology
promise to overcome many of these challenges and to realize
the therapeutic potential of allosteric modulators as novel
medicines.
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